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Abstract—This study investigates the impact of genotypic and
behavioral diversity maintenance methods on controller evolution
in multi-robot (RoboCup keep-away soccer) tasks. The focus is to
examine the impact of these methods on the transfer learning of
behaviors, first evolved in a source task before being transferred
for further evolution in different but related target tasks. The
goal is to ascertain an appropriate controller design (NE: Neuro-
Evolution) method for facilitating improved effectiveness given
policy transfer between source and target tasks. Effectiveness is
defined as the average task performance of transferred behaviors.
The study comparatively tests and evaluates the efficacy of
coupling policy transfer with several NE variants. Results indicate
a hybrid of behavioral diversity maintenance and objective-based
search yields significantly improved effectiveness for evolved
behaviors across increasingly complex target tasks. Results also
highlight the efficacy of coupling policy transfer with the hybrid
of behavioral diversity maintenance and objective based search in
order to address bootstrapping and deception problems endemic
to complex tasks.

I. INTRODUCTION

In Evolutionary Robotics (ER) [1] there is increasing
empirical evidence that maintaining diversity in genotypes
(controller encodings) and phenotypes (controller behaviors)
improves the quality (task performance) of evolved behaviors
[2], [3], [4], [5]. Behavioral diversity maintenance methods
to boost search effectiveness have received increased attention
recently and significant benefits have been demonstrated in
various simulated [6], [2], [4], and physical [5], [3] ER tasks.

Also, the benefits of genotypic diversity maintenance is
well explored in evolutionary computation research [7], includ-
ing niching techniques such as fitness sharing and crowding [8]
and multi-population models [9]. Though genotypic diversity
maintenance methods in ER tasks has received some research
attention [2], there are relatively few studies using multi-
robot [10], [4] and swarm-robotic tasks [11]. Also, ER studies
comparing genotypic and behavioral diversity maintenance
methods demonstrate that behavioral diversity maintenance
consistently out-performs genotypic diversity maintenance [2],
[12], [13].

Furthermore, there has been little research using NE cou-
pled with genotypic and behavioral diversity maintenance to
adapt robot behaviors and then facilitate behavior transfer
between different but related tasks (transfer learning [14]).
Previous work has demonstrated that such methods increase
the effectiveness of behavior evolution in these related tasks
[15], [16]. However, such work uses objective (fitness function)
based search in controller evolution. Thus, the focus of this

study is to investigate the impact of genotypic and behavioral
diversity maintenance on transfer learning1.

Transfer learning attempts to improve task learning by
leveraging knowledge from learning a related but simpler task
[14]. Transfer learning reuses learned information across tasks,
where information is shared between a source and target task,
and used as a starting point for learning new behaviors in target
tasks. Transferring knowledge that is learned on a source task
accelerates learning and increases solution quality in target
tasks by exploiting relevant prior knowledge. Transfer learn-
ing has been widely studied in the context of reinforcement
learning for single-agent tasks such as robot navigation and
game-playing and some multi-agent tasks [17], where behavior
transfer is between the same task with varying complexity.A
popular multi-agent test-bed is RoboCup keep-away soccer
[18], which has received significant attention in multi-agent
transfer learning research [15] and is thus used in this study.

This study extends previous work [19] demonstrating that
Hypercube-Based Neuro-Evolution for Augmenting Topologies
(HyperNEAT) [20] for controller evolution and coupled with
behavioral diversity maintenance (novelty search [6]) yielded
significant benefits given behavior transfer between a range
of keep-away tasks. This work compared three variants of
NEAT and HyperNEAT (novelty, objective and hybrid novelty-
objective based search). In all tasks and methods tested, the hy-
brid yielded the greatest benefits in terms of team task perfor-
mance (effectiveness) when coupled with policy transfer. This
study tests five variants of HyperNEAT, though comparatively
evaluates these variants for longer evolution times in more
complex tasks (defined by higher dimensional search spaces).
We only used HyperNEAT as previous work demonstrated its
efficacy over NEAT as an appropriate Neuro-Evolution (NE)
method for facilitating behavior transfer between multi-agent
tasks of increasing complexity [19].

Specifically, this study tests objective-based search (OS),
novelty search (NS), hybrid novelty-objective based search
(ONS), genotypic novelty search (GNS), and a hybrid GNS-
objective based search approach (OGN). The NE search pro-
cess is of particular interest, as several studies have supported
the efficacy of objective-based search in transfer learning [15],
[16], though the impact of genotypic and behavioral diversity
maintenance on transfer learning has received little research
attention. This study’s key contribution is its demonstration of
an effective NE search method to couple with policy transfer
in (keep-away soccer) tasks of increasing complexity.

1Transfer learning and policy (behavior) transfer are used interchangeably.



A. Research Objectives (Hypotheses)

The study thus has two research objectives. First, to
extend previous work [19] via coupling behavior transfer
with genotypic and behavioral diversity maintenance variants
of HyperNEAT. This coupling is tested for its capability to
adequately address the problems of bootstrapping [9] and
deception [21] in increasingly complex keep-away tasks.

Second, to further test (in keep-away soccer) a hypothesis
that combining behavioral diversity maintenance and objective-
based search is an effective means for balancing exploitation
and exploration in controller synthesis for complex and decep-
tive evolutionary robotics tasks [2], [12], [13], [4].

II. METHODS

To address this study’s objectives (section I-A), exper-
iments use five variants of HyperNEAT (section II-A) for
controller adaptation in keeper teams in keep-away soccer
(section III). HyperNEAT was selected given its successful
application in related work [19]. Keeper teams are homogenous
so a single controller is evolved to represent team behavior.
The taker team uses a heuristic controller [19]. The following
describes the HyperNEAT variants and their application.

NS: The fitness function was replaced with a behavioral
diversity maintenance metric [6].

OS: A fitness function [20] directs evolutionary search.
Fitness (section II-B) is average keeper ball hold time (average
simulation time that the keepers have possession of the ball).

ONS: The fitness function was replaced by a hybrid
objective-novelty search function (section II-B).

GNS: The fitness function was replaced by a genotypic
diversity maintenance (section II-C).

OGN: Objective-based GNS hybrid search (section II-B).

A. HyperNEAT: Hypercube-based NEAT

Hypercube-based NEAT (HyperNEAT) [20] is an indirect
(generative) encoding method that extends NEAT and uses two
networks, a Composite Pattern Producing Network (CPPN)
[22] and a substrate (ANN: Artificial Neural Network). The
CPPN uses generative encoding to indirectly map evolved
genotypes to ANNs and encode pattern regularities, symme-
tries and smoothness of task geometry as the substrate. This
mapping functions via having coordinates of each pair of nodes
connected in the substrate fed to the CPPN as inputs. The
CPPN outputs a value assigned as the synaptic weight of that
connection and a value indicating whether that connection can
be expressed or not. HyperNEAT uses the evolutionary process
of NEAT [23] to evolve the CPPN and determine ANN fitness
values. The main benefit of HyperNEAT is scalability as it
exploits task geometry and thus effectively represents complex
solutions with minimal genotype structure [20]. This makes
HyperNEAT an appropriate choice for evolving complex multi-
agent solutions [16], [24].

HyperNEAT’s capability to evolve controllers that account
for task geometry also makes it appropriate for deriving
controllers that elicit behaviors robust to variations in state and
action spaces and noisy, partially observable environments of

multi-agent tasks [25]. Also, it has been demonstrated that
transferring connectivity patterns [26] of evolved behaviors
is effective for facilitating behavior transfer between multi-
agent tasks [16]. That is, HyperNEAT evolved behaviors
can be transferred to increasingly complex versions of keep-
away without further adaptation, and transferred behaviors
often yield comparable task performance to specially designed
learning algorithms [16].

1) HyperNEAT Keeper-Team Controller: HyperNEAT is
also used to evolve on controller for a keeper team. The CPPN
has four coordinate inputs and a bias node with a constant
value of 1.0, and two outputs (figure 1). The coordinates x1,
y1, x2, y2 are of two sampled nodes. That is, x, y coordinates
of node 1 and node 2 on the input of the substrate network.
The CPPN outputs are synaptic weight values assigned to
connections between node 1 and node 2, and a connection
expression value, Link Expression Output [27], determining if
a connection can be created.

Methods from previous work are used to represent keep-
away task states. Specifically, field size and relative positions
of the ball, takers and keepers are represented using Birds Eye
View (HyperNEAT-BEV) [16]. HyperNEAT-BEV uses indirect
encoding so it can represent task complexity changes without
genotype representation changes. A 20×20 square grid field
was encoded on a two-dimensional substrate with 20×20 input
layer and 20×20 output layer with coordinates in the x, y plane
in the range [−1.0, 1.0], where a 400×400 input-output vector
yielded 160, 000 possible connections. Each field grid square
was represented by a substrate network node. Keeper and taker
positions were marked with values 1.0, −1.0, respectively.

In task simulation, straight line paths were calculated from
the keeper with the ball to all other agents. If the path
intersected another keeper then this node to node connection
was assigned a 0.3 value. If the path intersected a taker a −0.3
value was assigned to this node to node connection. Otherwise,
0.0 was assigned if there was no agent in a grid square on the
path. Thus, the number of keepers was indicated by the number
of squares having a 1.0 value. Figure 1 presents an example of
a HyperNEAT evolved controller, with the substrate (20×20
grid of inputs and outputs) encoding task environment state.

B. Behavioral Diversity and Objective-based Search

Many NE methods have incorporated behavioral diversity
maintenance into their search processes as a means of discov-
ering novel and higher quality solutions, compared to the same
methods using objective based search [2].

1) Novelty Search (NS): NS [6] is a search process that
rewards evolved behaviors based on their novelty. Thus, a
genotype is more likely to be selected for reproduction if
its encoded behavior is sufficiently different from all other
behaviors produced thus far in artificial evolution. NS has been
demonstrated as yielding solutions that out-perform objective
based search in various multi-agent tasks [28], [4]. Given this,
NS was selected as the behavioral diversity mechanism for
controller evolution.

The function of NS is to consistently generate novel team
(keep-away) behaviors. Hence, we define team behavior in
terms that potentially influence team behavior but are not



Fig. 1. Left: Substrate encoding the virtual field (20x20 grid of inputs and outputs). Connection values between input-output nodes represent agent positions
relative to the center of the field. Right: Node-pair connections in the substrate are sampled and coordinates passed as CPPN inputs. The CPPN then outputs
the synaptic weight of each sampled connection.

directly used for task performance evaluation. That is, we
use the behavioral properties: average number of passes,
dispersion of team members, and distance of the ball to the
center of the field. To measure novelty we normalize each of
these properties as task specific behavioral vectors, where the
addition of these vectors is always in the range: [0, 1]. This
team level behavioral characterization has been used previously
[29] and out-performs individual behavioral characterizations.
Behavioral distance is computed using equation 1:

δi(x, y) = ‖xi − yij‖ (1)

Where, xiand yij are normalized behavioral characteriza-
tion vectors of two genotypes. Novelty is then quantified by
equation 2, which replaces the fitness function of HyperNEAT.

novx =
1

3k

k∑

i=1

3∑

j=1

δ(xj , yij) (2)

Where, xj is the jth behavioral property of genotype x,
yij is the jth behavioral property of the ith nearest neighbor
of genotype x and δ is the behavioral distance between two
genotypes x and y computed in equation 1. The novx then
is derived from the mean behavioral distance of an individual
with k nearest neighbors. The parameter k (number of nearest
neighbors) is user specified. Related work used k = 20 [30]
and k = [3, 10] [13] with varying results. Gomes et al. [13]
found k values are highly dependent on the type of novelty
archive, where k = 15 yielded relatively good performance
across all tested archives. Hence this study uses k = 15.

As in related work [6], the novelty of newly generated
genotypes is calculated with respect to previously novel be-
haviors stored in the novelty archive, where archived behaviors
are ranked by diversity. The maximum archive size is 1000
(given results of related work [13]), where a maximum of 10
behaviors are added to the archive each generation (table I).

2) Objective-based Search (OS): Uses the following fitness
function to compute mean episodic length using equation 3:

fitx =
1

N

N∑

j=1

Tj (3)

Where, the length of an episode j is Tj , N is the number
of task trials (simulation length), and Tj is the length of trial
j. Objective-based search is attained by setting ρ = 1.0 in
equation 4 giving a zero weighting to novelty search.

scorei = ρ · fiti + (1− ρ) · novi (4)

Where, fiti and novi are normalised fitness and novelty of
ith genotype respectively, ρ ∈ [0, 1] is user selected to control
the relative contribution of each metric to selection pressure.

3) Hybrid Objective-Novelty Search (ONS): In line with
previous hybrid NS research [29], we use a metric that linearly
combines NS with the objective-based search of HyperNEAT
(equation 4). Previous work demonstrated that a medium to
high novelty weight 50-80% yields the best results [11]. We
found that a novelty weight of 40% yielded the best results in
this case study (table I). All other novelty search parameters
are the same as used for the NS variant.

C. Genotypic Diversity and Objective-based Search

1) Genotypic Novelty Search (GNS): Is similar to NS
(section II-B) except that behavioral search is directed by a
search for novel genotypes (controller encodings). The geno-
typic distance between two genotypes is measured using linear
combination of Excess (E) and Disjoint (D) genes [23], and a
mean weight difference of matching genes W [31] (equation
5). Genes that do not match are either disjoint or excess
depending on whether they occur within or outside the range
of parent innovation numbers [23].

δg(a, b) =
c1E

N
+

c2D

N
+ c3W (5)



Where, N is the number of genes in the longest genotype
of the population, and coefficients c1, c2 and c3 are parameters
used to adjust the weighting of the three factors E,D and W
respectively. The sparseness (Sg) of genotype x in population
evolution is computed by equation 6.

Sg(x) =
1

k

k∑

i=1

δg(x, yi) (6)

Where, yi is the ith nearest neighbor of x, k is the number
of nearest neighbors of x and δg is the compatibility distance
measure (equation 5). The generation n exploration metric is
then the population’s mean sparseness (equation 7):

Eg(n) =
1

N

N∑

x=1

Sg(x) (7)

Where, N is the population size parameter and Sg(x) is
the sparseness of individual x in generation n computed in
equation 6. If exploration measure Eg(n) is high it means the
population has genetically diverse genotypes. The GNS variant
thus uses equation 6 in place of HyperNEAT’s fitness function,
so as genetically diverse genotypes are selected. The same
nearest neighbor and archive parameters are used for GNS as
used for the NS variant (section II-B).

2) Hybrid Objective-GNS (OGN): Uses equation 4, except
that novi now represents the genotype diversity metric (equa-
tion 6). That is, equation 6 specifying the genotype sparseness
in the population (normalised into the range [0, 1]) replaces
the normalised novelty function value novi in equation 4.
Similarly, ρ ∈ [0, 1] controls the relative contribution of fitness
versus genotypic diversity directed search. Parameter tuning
experiments indicated that a genotypic diversity weight of 40%
(table I) was appropriate for this study’s experiments. All other
parameters are the same as used for the GNS variant.

D. Behavior (Policy) Transfer Method

For all HyperNEAT variants, the entire evolved population
was transferred from the source task (at the final generation)
and set as the initial population for evolution in the target
task. Previous research [19] indicated that this method was
most effective for HyperNEAT and various keep-away tasks.
Using BEV [16] representation, an artificial neural network
(substrate) encodes the keepaway task state variables directly
to reflect the task geometry. This way the CPPN evolves the
solution as a direct function of the task geometry, exploiting
the regularities in the task geometry. In this representation
a source task and a target task can be represented on the
same two-dimensional substrate network. Policy transfer from
source to target task can be performed with no change in task
representation and in the input-output structure of the evolved
CPPN that encodes the geometric relationships of input and
output search space.

III. EXPERIMENTS

Experiments test the impact of the five HyperNEAT vari-
ants (section II) as behavior search methods in a broader range

of keep-away tasks and for increased evolution times in source
and target tasks, compared to previous work [19]. The goal is
for a given NE method to evolve keep-away behaviors that
keep the ball in their possession and out of the possession
of the taker agents for the duration of a task trial (table I).
Keeper teams are homogenous so a single controller (evolved
by HyperNEAT) represents keeper team behavior. A predefined
rule-set controls taker agent behavior [19].

Five target tasks of increasing complexity were tested. NE
adaptation time was increased by 50% and 100% in source
and target tasks (respectively) [19]. A keeper team was first
evolved in a source task of three keepers and two takers (3vs2)
for 30 generations. Using behavior transfer (section II-D), team
behavior evolved at generation 30 is transferred to a target
tasks and further evolved for 100 generations (table I).

Keep-away task trials were played on a simulated bounded
field2 (20 × 20 square grid). A task trial ended when a taker
gained control of the ball or the ball was out of bounds. In
all experiments, each genotype (keeper team behavior) was
evaluated over 30 task trials per generation, where each task
trial tested random agent positions. Though, keepers always
started near each of the field’s corners, takers at random
positions close to the center of the field, and the ball in
the possession of a (randomly selected) keeper. Average task
performance was computed over 30 task trials, where the
highest task performance was selected from every generation
and a team’s average task performance was computed over 20
runs for a given method variant. Table I specifies the NE and
simulation parameters used in all experiments.

IV. RESULTS AND DISCUSSION

Policy (multi-agent behavior) transfer was applied between
the source 3vs2 keep-away task and one of five more complex
target tasks, after evolving keeper team behavior in the source
task for 30 generations, transferring behaviors to a target task
and further evolving for 100 generations (table I). The target
keep-away tasks were 4vs3, 5vs3, 5vs4, 6vs4 and 6vs5 (section
III). Keep-away behavior was evolved with one of five NE
variants (section II), and behavior evolved in the source task
was transferred via transferring the entire evolved population
as the initial population of the target task (section II-D).

Figure 2 presents the average normalized maximum task
performance of each HyperNEAT variant in each keep-away
target task. Task performance maximums are calculated each
run (100 generations) and averaged over 20 runs. Task perfor-
mance results of evolving from scratch (for 100 generations)
in the most complex target task (6vs5) is included to indicate
the benefits of using HyperNEAT to facilitate transfer learning.

The MannWhitney U test was applied in pair-wise com-
parisons between each HyperNEAT variant for a given target
task. Statistical tests were also applied for each HyperNEAT
variant in each target keep-away task, with and without policy
transfer (for clarity, figure 2 presents only the 6vs5 task, with
and without policy transfer). For all target tasks (4vs3, 5vs3,
6vs4 and 6vs5), statistical tests indicated a significantly higher
task performance of each HyperNEAT variant with policy
transfer, compared to evolution in the same tasks without

2All experiments were run in RoboCup keep-away version 6 [15].



Simulation Parameters Setting

Number of Runs 20

Task trials per generation 30

Agent positions Random

Environment size 20 x 20 grid

Agent speed (per iteration) 1 grid cell

Ball speed (per iteration) 2 grid cells

HyperNEAT CPPN Functions

Identity x

Gaussian e−2.5x2

Bipolar Sigmoid 2

1+e
−4.9x

− 1

Absolute value |x|

Sine sine(x)

NS / GNS Parameters Setting

NS nearest neighbor k 15

Maximum archive size 1000

Compatibility threshold 3

Behavioral threshold 0.03

Neuro-Evolution (NE) Parameters Setting

Population Size 150

Generations (Source task) 30

Generations (Target task) / No Policy Transfer 100

Maximum number of species 10

Maximum population per species 30

NEAT / HyperNEAT weight range [-5.0, 5.0]

Survival threshold 0.2

Mutation rate

Add neuron 0.1

Add connection 0.18

Remove connection 0.15

Weight 0.7

Mutation type Gaussian

TABLE I. LEFT: KEEP-AWAY SIMULATION PARAMETERS. CENTER: HYPERNEAT (CPPN ACTIVATION FUNCTIONS), NOVELTY SEARCH (NS) AND

GENOTYPIC NOVELTY SEARCH (GNS) PARAMETERS. RIGHT: NEURO-EVOLUTION (NE) PARAMETERS.

Fig. 2. Box plots of average normalized maximum task performance for the five HyperNEAT method variants: Objective-based search (OS), Novelty Search
(NS), Objective-Novelty hybrid (ONS), Genotypic novelty search (GNS), Objective-GNS hybrid (OGN). Averages are calculated over 20 runs and for each target
keep-away task. Top row: 4vs3, 5vs3, 5vs4 keep-away. Bottom row: 6vs4, 6vs5 keep-away, and 6vs5 keep-away with no policy transfer.

policy transfer. This supports previous work [19] indicating
HyperNEAT as appropriate for policy (behavior) search where
policy transfer enables the evolution of significantly higher
performance behaviors (compared to evolving behaviors in the
same tasks from scratch).

A. Complexity and Deception in Keep-Away

Previous research [19] indicated that keep-away task com-
plexity increases not only due to the number of taker agents
(making successful passes between team-mates more difficult),
but also due to the number of keeper agents. That is, as the
number of keeper agents increases, so too does the complexity
of the decision making process for passing the ball and moving
(as more team-mates must be accounted for), as well as the
potential for interference between keeper agents (given that the
size of the simulated field does not increase). Consider that at
each task simulation iteration of IvsJ keep-away (where I and
J are the number of keepers and takers, respectively), each
keeper must process the 20×20 virtual field space, accounting
for and processing I−1 team-mates, J taker agents, and the
ball.

Task complexity is equated with the taker to keeper agent
ratio plus the total number of agents (−1 as each keeper
must account for its team-mates and +1 for the ball). Thus,
keep-away tasks, in order of increasing complexity are, 4vs3,
5vs3, 5vs4, 6vs4, and 6vs5. The 6vs5 keep-away task is most
complex as the increased number of takers increases the
likelihood of the ball being intercepted or taken from a keeper.

We consider keep-away deceptive, though not perversely
deceptive as in deceptive maze navigation [6]. That is, in the
OS variant, fitness is average keeper ball hold time (section
II), and thus keeper behaviors that maintain ball control are
rewarded and selected for. Hence, even though the action of
moving directly towards the ball can result in ball control, the
field position of this keeper is disadvantageous if the keeper
is surrounded by takers, thus minimizing chances that the ball
can be successfully passed to a team-mate, and maximizing the
likelihood that the ball will be taken from the keeper. Thus,
such behaviors (satisfying the fitness objective) are deceptive in
that evolutionary stepping stones (such as minimizing distance
to a ball before attaining an advantageous position for passing)
are not rewarded and not selected for. The 6vs5 task is



Fig. 3. Heat-maps presenting the portion of genotypes, in the final generation of evolution in a given target task (4vs3, 5vs3, 5vs4, 6vs4, 6vs5), that falls
within each 20 percentile of normalized task performance [0.0, 1.0]. Bottom Right: Heat-map for 6vs5 keep-away with no policy transfer (to highlight efficacy
of policy transfer, where 6vs5 is the most complex task tested). Darker shading indicates a higher portion of genotypes in the given range. OS: Objective-based
search. NS: Novelty Search. ONS: Objective-Novelty hybrid search. GNS: Genotypic Novelty Search. OGN: Objective-GNS hybrid search.

construed as the most deceptive as with five takers there is an
increased likelihood that the keepers (via satisfying the fitness
objective) will execute detrimental behaviors.

B. Task Performance Comparisons

Statistical tests comparing all variants with policy transfer
(in each task) indicated the following.

In 4vs3 and 5vs3 (figure 2, top left and center, respectively)
keep-away, Objective-Novelty hybrid search (ONS) yielded a
significantly higher average task performance, compared to
all other variants. Also, for both 4vs3 and 5vs3 keep-away,
Objective-based search (OS) yielded a significantly higher
average task performance than the Novelty Search (NS) variant.

In 5vs4 keep-away (figure 2, top right), the ONS, OS
and NS variants, all yielded the highest average performance,
where there was no statistical difference between each, but
a significantly higher performance compared to Genotypic
Novelty Search (GNS) and Objective GNS hybrid (OGN).

In 6vs4 keep-away (figure 2, bottom left), the ONS variant
yielded the highest average task performance, and the OS and
NS variants yielded the second and third highest performance,
respectively. There was a significant difference between each,
though the greatest task performance differences were between
the OS, NS, and ONS variants and the GNS and OGN variants.

In 6vs5 keep-away (figure 2, bottom center), the ONS and
OS variants yielded the highest performance, with no signif-
icant difference between them. There was also a significantly
higher performance between ONS and OS, and the NS, GNS
and OGN variants. The greatest performance differences were
between ONS, OS, NS and the GNS and OGN variants.

The following sections elucidate these results in terms of
the exploration versus exploitation capacity of each variant.

C. Genotypic Diversity Maintenance (GNS, OGN variants)

In terms of the impact of the genotypic diversity mainte-
nance variants (GNS and OGN), these results support related
work [12], [13] indicating that in complex and deceptive [6]
tasks, genotypic diversity maintenance approaches perform rel-
atively poorly compared to behavioral diversity maintenance.

Consider search space exploitation, the average maximum
task performance of GNS and OGN evolved populations.
Figure 2 indicates, for all tasks, GNS and OGN yielded
significantly lower average task performances compared to OS,
ONS and NS (figure 2). In terms of search space exploration
(the fitness and diversity of the evolved population), figure 3
indicates that, for all tasks, the largest portions of populations
(at the final generation) evolved by GNS and OGN were in the
lowest performing part of the behavior space. Each heat-map in
figure 3 presents, for each task, the portion of genotypes within
each 0.2 range of normalized task performance: [0.0, 1.0].

For example, in 6vs5 keep-away (the most complex and
deceptive task, section IV-A), 79% and 61% of GNS and
OGN evolved behaviors, respectively, were in the (normalised)
performance range: [0.0, 0.4], compared to 9% and 23% of
behaviors evolved by the behavioral diversity maintenance
variants (ONS and NS, respectively). Similarly, in 5vs4 keep-
away (the next complex task, section IV-A), 68% and 55% of
GNS and OGN evolved behaviors, were in the performance
range: [0.0, 0.4], compared to 5% and 17% of ONS and
NS evolved behaviors, respectively, in the same range. In the
simplest task (section IV-A), 4vs3 keep-away, 67% and 54%
of GNS and OGN evolved behaviors were in the performance
range: [0.0, 0.4], compared to 3% and 2% of ONS and NS
evolved behaviors, respectively, in the same range. This pattern
of high portions of poorly performing behaviors in GNS and
OGN evolved populations held for all tasks.



Thus, overall genetic-based diversity maintenance yielded
no benefits either as the driving selection mechanism (GNS)
or when combined with objective-based search (OGN) and
applied to evolve behaviors in the keep-away tasks tested.
Hence, for keep-away and its solution search space, we surmise
that searching for genetically diverse genotypes does not facil-
itate effective behavior evolution and as in related work [13],
behavioral diversity maintenance is a more effective approach.

D. Behavioral Diversity Maintenance (ONS, NS variants)

The ONS variant yielded the most benefits overall in its
capability to balance exploitation and exploration of the search
space as task complexity increased. That is, for all tasks, ONS
evolved populations explored diverse regions of the search
space (a range of behaviors of varying quality) and discovered
(exploited) high quality behaviors within these regions.

First, in terms of behavior effectiveness (search space
exploitation) the ONS variant evolved a significantly (statis-
tically) higher or comparable average task performance for
all tasks (section IV-B). Second, in terms of search space
exploration, the diversity of effective behaviors, the ONS
variant yielded the greatest benefits for all tasks.

The efficacy of the ONS variant, resulting from its capabil-
ity to balance exploration versus exploitation, is evidenced in
figure 3. ONS evolved a greater portion of effective behaviors,
compared to all other variants in all tasks except 6vs5 keep-
away (the most complex and deceptive task, section IV-A). For
example, in 5vs4 keep-away, 22% of ONS evolved genotypes
were in the task performance range: [0.6, 0.8]. Though, only
6% and 10% of OS and NS evolved genotypes (respectively),
and no OGN and GNS evolved genotypes, were in this same
range. However, in 6vs5 keep-away, the NS variant was most
beneficial in terms of the exploration versus exploitation trade-
off in the evolved population. That is, 31% of NS evolved
genotypes were in the performance range: [0.6, 0.8], where
as, only 3% and 14% of OS and ONS evolved genotypes
(respectively), and no OGN and GNS evolved genotypes, were
in the same performance range.

This result supports the hypothesis that for difficult prob-
lems without too much deception, combining objective-based
and novelty search is an effective approach [2], especially in
related evolutionary robotics tasks [12], [13], [4]. Though,
in keep-away, as task complexity and deception increased
then pure NS yields the greatest benefits (compared to other
variants) in terms of balancing exploration versus exploitation,
via locating diverse regions of the behavior space containing
high quality behaviors (figure 3). However, this only held for
the most deceptive tasks (6vs5 keep-away), and as such more
deceptive and complex versions of keep-away are being inves-
tigated. Figure 3 also supports, for all tasks, the demonstrated
exploratory capacity of NS, for discovering a diverse range of
(not necessarily optimal) behaviors [12].

Furthermore, figure 3 supports the benefits of coupling
behavioral diversity maintenance search with policy transfer,
as it demonstrates each variant’s boosted exploration versus
exploitation capabilities given policy transfer. That is, method
variants using policy transfer yield increased exploration of
effective behaviors. Consider that ONS and NS evolved geno-
types (100 generations, table I) in 6vs5 keep-away, given no

policy transfer, 4% and 1% of behaviors (respectively) were in
the [0.6, 0.8] task performance range. Comparatively, 14% and
31% of ONS and NS evolved genotypes with policy transfer
(respectively) were in the same task performance range. Less
of a performance jump was observed for the OS variant,
and there was no change for the GNS and OGN variants. In
6vs5 keep-away, 2% of OS evolved genotypes without policy
transfer were in the performance range [0.6, 0.8], where as,
only 3% of OS evolved genotypes with policy transfer were
in the same range.

Figure 3 only presents comparisons for 6vs5 keep-away as
this was the most difficult and deceptive task tested (section
IV-A) and similar results were observed for all other tasks
tested without policy transfer. These results further support the
hypothesis that combining behavioral diversity maintenance
and objective-based search facilitates an effective exploration
and exploitation trade-off (section I-A), where such benefits
are increased with policy transfer.

E. Objective-based Search (OS variant)

Experimental results also indicate the appropriateness of
objective-based search as the applied search approach for
behavior evolution in keep-away, for all degrees of task com-
plexity tested (section IV-A). Consider that, in all tasks (except
5vs4 keep-away, in which OS yielded a task performance
comparable to ONS and NS), the OS variant was the second
highest performing variant (figure 2). Hence, we surmise that
keep-away is representative of a task domain that is definable
in terms of sub-solution stepping stones, where such sub-
solutions are readily discoverable by objective-based search.
In keep-away, as with robotic biped gait evolution [12], these
solution stepping stones are known and appropriate objective
functions can be designed (section II-B).

However, these results also indicate that such objective
functions are susceptible to deception. This is evident from
the highest average task performance of the hybrid objective-
novelty search variant (ONS), except in 5vs4 keep-away, where
there was no significant difference between the best three
performing variants, OS, ONS and NS. It is theorized that the
deceptive aspects of keep-away prevent the OS variant from
adequately exploring regions of the solution space containing
the most effective (highest task performance) behaviors, espe-
cially as task complexity increases.

For example, consider 4vs3 keep-away, the simplest and
least deceptive of the tasks tested (section IV-A), only 6% of
OS evolved genotypes were in the task performance range:
[0.6, 0.8], where as, 25% and 22% of ONS and NS evolved
genotypes (respectively) were in this same performance range.
For 6vs5 keep-away, the most complex and deceptive of the
tasks tested (section IV-A), only 3% of OS evolved genotypes
were in the task performance range: [0.6, 0.8], where as, 14%
and 31% of ONS and NS evolved genotypes (respectively)
were in this same performance range.

This further supports the hypothesis (section I-A) that con-
troller evolution with behavioral diversity maintenance com-
plements objective-based search via increasing solution space
exploration, thus boosting the exploitative search capabilities
(solution quality). These benefits were found to increase when



the hybrid novelty-objective search variant (ONS) was coupled
with policy transfer (section IV-D).

V. CONCLUSIONS AND FUTURE WORK

This study investigated coupling policy transfer with be-
havioral and genetic diversity maintenance as a means of alle-
viating two confounding problems with the evolutionary syn-
thesis of controllers, the bootstrap problem [9] and deception
[21]. To address this, the study tested multi-agent keep-away
soccer task with policy transfer between tasks of increasing
complexity and deception. Results supported the efficacy of
a hybrid of behavioral diversity maintenance (novelty) and
objective search for appropriately balancing exploration versus
exploitation in the search process, in increasingly difficult and
deceptive tasks. Supporting related work, the novelty-objective
hybrid yielded a significantly higher task performance com-
pared to all other search variants. Genotypic diversity main-
tenance based search approaches were found to be relatively
ineffective in their coupling with policy transfer as well as
without policy transfer. The key contribution was to highlight
benefits of behavioral diversity maintenance for controller
evolution when used in company with policy transfer.

Future work aims to further support the efficacy of hybrid
novelty-objective search via evaluating this study’s variants
with reinforcement learning for policy transfer [17] in keep-
away and other tasks such as multi-agent predator-prey [24].
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